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MOBELING NATURAL LANGUAGE INFORMATION FOR USE IN THE COMBINATION OF EVIDENCE PROBLEM

1.R. Goodman

Command and Control Department, Code 421,

Naval Ocean Systems Center, San Dfego, Californfa 92152.

Abstract

The general problem of combining information from vari-
ous sources, linguistfc and/or numerical, has been treat-
ed in previous work. This paper continues the effort

with emphasi; o the aodeiing of linguistic information.
Included in the results is a new approach to the model-
ing of conditional expressions. In addition, temporal

and modal operators are treated as well as linguistic
connectives and relations.

INTRODUCTION

This paper continues the ongoing investigations into the
general problem of combining information that arises
from many different sources in location and type, the
latter including a wide variety of linguistic-based or
probabilistic origins. A major applicatfon of this work
has been to the target tracking and data associatfon-

or "correlatfon*- problem in Naval Ocean Surveillance.
{For previous studles see, e.q., [1],[2].03].)

In brief, combination of evidence has been considered
from a multiple-valued logical viewpoint, related to the
theory of fuzzy sets as originally developed and refined
by Zadeh [4],(5] and carried further by other research-
ers[6][71[27]part of the work has also been motivated
and guided by parallel results from the theory of random
sets and "flou™ sets [81,[9]. The major application to
the problem of data association has culminated in the
PACT (Possibilistic Approach to Correlation and Track-
ing} algorithm [2],[38. This is a procedure which oper-
ates upon raw data or suitably smoothed or predicted
data, depending upon the given scenario, which is cate-
gorized according to attribute type. Thus for example,
data may be classified into geolocation- the most com-
mon and first historically to be considered by research-
ers in correlatfon theory (see the extensive work in-
volving only geolocation attributes in the Naval Ocean
Survetllance Correlation Handbook [10],[11])-as well as
other categories. The latter include classification of
various sorts, visyal sighting information, and many
kinds of sensor system state parameter data. In addition,
PACT operates upon predetermines functions or tables of
possible errors involved in the reporting of the attri-
bute informatfon, as well as upon a collection of infer-
ence rules obtafned from a combination of experts and
analytic considerations. These inference rules connect
degrees of possible matches of {nformation for various
combinations of attributes between a typical pafr of
track histories considered for correlation and the re-
sulting levels of possible correlations. Thus, a typical
inference rule might state in {ts linguistic form "If
geolocation information matches to degree 0.8 and radar
(of type A, say) parameter informatfon matches rather
poorly, then the correlation level between the two

track historfes {s low, but not impossible.” Some of

the attributes in the above process are statistical in

iw2ture, resulting in statistical procedures for the
modeling of associated error tables and matching

tables used in the inference rules, while others are
more subjective dr rmature and 22 oLtained from pooling
panels of experts or from other non-analytfc sources.
Examples of the former include geolocation and sensor
state attributes, while examples of the latter include
various verbal descriptions, classifications, and fin-
telligence information. The output of the PACT algorithm
is a posterfor possibility or membership function of

the correlation level between any two given track hist-
orfes of interest. In turn, a single figure-of-merit

has been developed which represents the overall! correl-
ation level between the two histories [12]. Also, a
scheme may be established in which the a'gorithm acts

as a "black box" producing a table of correlation values
relative to all tracks of interest to be used in per-
forming corfelation and tracking. Two major break-
throughs have teen recently obtained concerning the
design and asymptotic behavior of the algoritim.It has
been shown that ouidelines may be established for the
choice of class of operators used in the algorithm and
that if relatively data matches occur, the algorithm
will yield asymptotically consistent correlation levels.
Conversely, low data matches drive the algorithm event-
ually to low correlation outputs, as should be intut-
tively.(See [12] for both results.)

Since the core of the approach to combining evidence,
as outlined above, consists of inference rules and
error tables modeled within a framework of multiple-
valued logic, modeling of these relations is critical.
In addition, it 1s important that a wide scope of
relations can be treated. Huwever, at present, the

PACT algorithm can only handle the simplest type of
inference rules. The following inference rule 1s far too
complex in form to be incorperated in the algorithm:S*=
"In Ocean region V, and usually in RegionW , if the
weather is poor and the sea state corresponds to rel-
atively high turbulance, then indications by sensor
system A that a submarine was in the area are not that
reliable and probably should be discounted in favor of
geolocation matching information obtained from sensor
system B, although exceptions to thig can occur when
visibility 1s up to about two miles, {n which case it
has been shown that A-data matching should be assigned
a much higher degree of importance in {ts effect upon
correlation.” Another example s given by:S**="Contact
with the ship was held for about two hours , but was
lost just before the Straights of Skagerrak were sight-
ed, although purple side-insignies may have been spotted
as well as an oval-shaped dome near the rear of the
ship, but a foggy condition pervaded the area preventing
any further fdentification.”

Such examples as above illustrate the typical problems
faced in modeling ind symbolizing matural language.
This includes tne interpretation of modifiers such as
"usually”, “relatively high", "rot that reliable”,
modal and temporal operators such as “probably should




be","was held for about two hours”,and verb/predicative
relations such as "Contact with the ship", "was last“,

"foggy condition pervaded the area”. (See [13],[14] for
reiated linguistic problems arising in expert systems.)

A systematic approach to the full symbolization of
language §s thus most desirable. In this paper, some
modest efforts in this direction are made. Conditional
expressions, such as "most tall ships in region 5 are
enemy ones of type F" are considered. The approach here
is in contrast to Zadeh's rather arbitrary "fuzzy card-
inality"approach which cannot be directly derived from
multivalued truth considerations [5],[15]. A compre-
hensive approach is taken to the modeling of temporal
and modal relations, extending earlier ideas of Zadeh's
PRUF technique [5]. Some examples are presented {llus-
trating these fdeas with an important application to
the combination of evidence procedure as given in PACT.
[16] contains a number of other modeling procedures in
addition to those presented in this paper.

NATURAL LANGUAGE, FORMAL LANGUAGE, AND
SEMANTIC EVALUATIONS

Too often in the past, natural language information was
neglected in favor of "more precise™ numerical data. Or,
such information at times was arbitrarily precisified to
be in numerical form. Since the onset of Chomsky and
others, more rigorous outlooks have been taken toward
the understanding and modeling of informatforn content

in language [17],[18]. With the work of Zadeh on FRUF
[5] began a new era in the development of a calculus

for semantic evaluation of naturc! language. This
sectfon continues in the direction of Zadeh. The follow-
ing basic premises are assumed:

{a) A11 natural language information is translatable
into sequences of English sentences. The problem of
whether a given natural language molds the speaker's
thoughts due to fts structure and lim{tations-the Whorf-
Sapir hypothesis, or whether this 1s not valid-as Berlin
and Kay claim (see [19] for comments)will not be dealt
with here.

{b)Ambiguity of meaning is expressed by {subjectively)
weighting the possibility of interpretations. Thus, e.q.
the expressfon "1 like her well." could be

Sy="1
5,="1
Sy="1
Sg="1

really 1ike her."

wish she remains well { in good health).
want her to become well.”

like the well that she owns."

Weight w, could be assigned to S, , 1=1,..,4, Usually
context 111015 for resolution of these possible branches
of meaning. For simplicity, it will be assumed here no
ambiguity is present. (See [19] for further discussion.)

(c)Any given sentence in actuality represents an equf-
valence class of possibly differently appearing-i.e.,
syntactically different- sentences, all having the same
semantic evaluation, a number lying in the unit fnterval
[0,1] representing 1ts truth value . This {s related to
Chomsky's concepts of transformational generative gram-
mar, where changes in forms of sentences are due to
word order rearranged, use of synonyms, change of voice
from active to passive, or other superficialities[17]0iq]

(d)Parsing Principle: Given any sentence {or any e-
quivalence class of sentences) there exists an analytic
form or parsing which is semantically the same but fis
structured within a formal language. This 1s related to
Chomsky's deep structure analysis [17], [18{ (For
further detafls on formal language and multfvalued
logfc,see [21][ 2116])Attempts at establishing auto-
matic procedures for parsing natural language into a
corresponding formal language form are many and the

atea renafns a lively one for research.
compendfum of approaches in [20].)

(See the large

A typical parsing analysis yields for any given com-
pound sentence S

S=comb(..,not,&,or,if()then,..)(S],52,...Sr) ny

where the operators "not","%","or"™, etc. all indicate
the usual unary or binary linguistic cornectors and
comb indicates some sequen“ial combination of these
connectors with sentences 51,52,..,Sr. the latter all
having simpler forms than S does. In turn, each S
also has a parsed form in terms of relatively sim&]er
sentences, etc.

(e) Modified Principle of Abstraction: Any sufficient-
1y simple sentence,such as the components S, in (1),
has a unique corresponding semantically equ‘valent form

(x e A) (2)

where A represents a generalized set, property, or at-
tribute, x is a possible vector of eliements in the ord-
inary sense, and ¢ {s the extended set membership re-
lation for generalized sets. (See [16] for further de-
tafls on these relations.) As in ordinary set relations,
A is considered a subset of an ordinary set X called
the universe of discourse or base space and in the or-
dinary sense,x is 1n X, 1.e. x ¢ X. It should be noted
that this apparently reascnable principle can lead to
paradoxes in formal logical systems , such as in clas-
stcal naive set theory or even 1n set theory based on
multiple-valued logic, for a wide variety of logics
(except for Lukasiewicz-¥,logfc- see {27 5 In the work
here, these difficulties will be ignored for the time
being.

Thus, (1) and () yield for sentence S

chomb(..,not.&,or,..)(x1cA1,xzsA:,..,xrtAr)
=(x ¢ A) {3
where
X=Xy aXpyuax ) s (8)
A=comb’ (..,C.X.t, #,..)(ALLA,,. . ,A ), (5)
where comb' 1s some other combfination function and
C is the complement operator on generalized sets, cor-

responding to "not" ,

X is the cartesian product operator corresponding to
’I&" R

+ is the cartesian sum operator corresponding to "or",
etc. (Again, see [16] for further details.)

(f) Principle of Semantic Evaluation: Any sentence S
has a truth valuve ||S}], a number in [0,1] which can
be evaluated through the values of the semantic funct-
fon |]-|| over comporent parts of S given the particular
semantic function, or equivalently , logic chosen [21].

(1) If the semantic tunction is truth runctional,
then eq.(3) 1s evaluated as

ISt i=combl. . opae,.00.0,,. 00, (x)hoie,y (x D)
1 r
= ¢, (x) (6)
where
éA Xy ]Ix € A i=1,..,r, (7)

ylelding in genera1 the membership or possibility
function ¢, :X1 -~ [0,1], and where
i
¢y = 'inot]]:[0,1] « [0.1] s a nonincreasing (8)
function with @N(O)=1 and oN(1)=O. the classical truth
table relations,




&nd similarly,

¢y = H&]1:00,11x[0.1] » [0,1] (9)

i{s a nondecreasing functfon usually assumed to be bound-
ec¢ abcve pointwise by the function min,contfnuous,symm.,
associative- so that it is unambiguously extendable re-
cursively to any finite number of arguments-and has the
boundary truth table values ¢ (0,y)=0.¢&(1,y)=y , for
all y tn {0,1]. An analagous f8rm holds >For

40 = llorl]:[0.11<[0,1] ~ [0,1] , (10)

nondecreasing,etc., bounded below pointwice by max, and
having boundary truth table values 4,(0,y}=y,o.{},y)=1,
for all y in [0,1]. 0 0

The above functions are called negations (with often
the added property of being an involution}, t-norms,
and t-conorms, respectively. (See [16] for various
properties of these operators.)

(fi) 1f |!I-|] 1s not truth functional, then the
evaluation in eq.(6) does not hold and a more compli-
cated evaluation procedure 1s valid. One example of
this is Probabilfty Logic, where e.g.,

15y or Sp11 = Isy11+ LIS, l1-11s,85,11, (1)

[Inot S| =1-]is]} , (12)
but in general there is no fixed by » not dependent on
any particular S] or 52 such that

“5] & SEH = ¢&(HS]H'”52|[>'

where S,,5,,S are any sentences. (See [21] for further
discuss!ong concerning .ruth functional vs. ngon-truth
functional evaluations.)

In additton, for a given set of natural language con-
nectors, more than one semantic evaluation function
may be used throughout a given sentence or in certain
different sentences.

SOME LANGUAGE OPERATORS AND RELATIQNS

In this section some common (but by no means exhaustive)
language operators and relations are considered.

(a} Linguistic/logicz! connectors.

The basic connectors representing negation (not),
conjunction (&),disjunction{or),implication(if(}then()),
have already been introduced. The last could also be de-
fined, as in the classical logic case, in terms of“not"
and"or"”. More compound operators such as "{ff" may also
be defined. Purely linguistic connectors such as "al-
though” and "but" can be defined entirely in terms of
the basic connectors also. For example, "although” may
be identified with tmplication and “but" with conjunct-
for, with some possible modifications.

(b) Hedges.

Hedges are intensifiers or modifiers operating on
attributes. If one lets 'reBresent generical]y any
hedge, such as“extremely’ “very.®1ittle’ “quite’’ then
any choice of semantic evaluation function 5!-}1 leads
to the function dkngc:’lhedgd’:[o']] - [0,1]. Some

controversy exists concerning how to generate spectra
of hedges from a neutral hedge, where exponentiation
and translatior parameter families have been compared
empirfcally as candidates[22],(23],[24]. An alternative,
and perhaps more general,approach is to consider first
the simple hedges corresponding to inteyral iterations
of conjunction. Thus, for any positive integer j, and
any sentence S=(xeA); x and A are as before :

S(J)=", has property A to the jth intensity"

="x has property A(J)"
= xeAYA{xeA)A. . 8{xcd’

= (.x f A(J)).

(i factors)
13)

In turn, assuming truth functionality here,

1151 126, (oy (). (0)) - (1)
However, for the chofce ¢,=min, no change in semantic
value for the jth 1ntensity is reflected here! (n the
other hand {f ) {s an archimedean t-norm such as prod

(i.e., ordinary product with respect to its arguments)
then it follows from the canonical representation (see
e.g. [16], Chapter 2)that there exists a rontinuous
monotoredecreasing function h:[0,1] - P* with h{Q)¢t=
and h(1)=0 such that 1
og{xy,..x )=h” (min(h(x )¢ -+h(x }.n(0) ), (15)

for all x, in [0,11. i=1,..,n, n arbitrarp posftive.
(Converse1y, any choice of such an h generates an ar-
chimedean ¢4 as in (15), where one need only take n=
2.) It follows immediately that (15) implies that j in

eq.(14) may be replaced by any positive real number,
so that (14) becomes

Analagous forms may be obtained relative to ¢ .,and
nfajtion as well may be employed. In (16), whg% 3>
S can be called an fnter<ifi~»tion ;7”°?? somewhat
arbiirarily, one denotes "V?Eijsv as 3 . "very very
(S)" as "very(very(S))}" =S ,etc. When j.i, C’t?
similarly can be identified withifttle of (5)7 etc.

Some tie-ins between hedges and quantifiers will be dis-
cussed {n subsection (e).

(16)

(c) Modal operators. (See [25] for background.)
Alethic modality concerns 1tself with the spectrum-
together with negations- of indicativeness. Thus for
example:"{mpossible’" improbable’"possible’"is " "Tikaly
"probablet”"certain"is one such cnllection. Indeed, cor-
respondences have been established between a simple
numerical scale of subjective confidences between 0 and
1 and such alethic forms for a number of applications
(personal observations). Using negation, the operators
of necessity and entailment, among others, may be de-
fined [25]. Deontic modality concerne,analagously, the
spectrum of permission or obligation. Other modal fam-
ilies of operators may concern hope, desire, hate,etc.

In any case, a reasonable way to generate such families
or spectra of modal operators is to choose some base
or anchor within a given family, denoted as modalo ,
say, and simply define

modal = hedge(modal,)
where hedge is some suitably chosen modifier, as in
subsection (e), depending of course on modal. Hence

S = modal{x ¢ A)

(x ¢ modal(A))

(x ¢ hedge(modaTO(A))) , (18}
evaluation, assuming truth functionality,

(i7)

[

with semantic

tlel
(R

i °moda1(°A(X))

= o]
°hedge(¢moda1°(°A(x)))' (]-)
(d) Temporal Operators , (See [26] for the related

area of temporal Yogics.)

Consider first the case for past time operators and
in particular the expression

(20)

Suppose that A is a generalized subset of domain X=
YxR- , where Y is some fixed population {an ordirary
set) and R™, the negative reals with zero,represents
the flow of time,with the present being identified with
t=0. It is also supposed that aA:X - [0,1] is known.

S=" y had property A".

Thus for any t ¢ R™ , the sentence

S, =

¢ (21

"y had property A at time t"




has the semantic evaluation

IS hi= ep(y.t) (22)
for any y ¢ Y. Next, identify "was" as a generalized
subset of R7, so that

[lwas|]| = ¢was:R— + [0,1] (23)
is some monotonically decreasing function with ¢Nas(-«)

-
=

{0)=0. At this point it should

that empirical investigation: have to be made to deter-
mine what the actual membership functions invelved in
this modeling-and all previously mentioned models-are
numerically. Putting together eqs.(21)-{23) yields the
reasonable interpretation for eq.(20) :

nd be remarked
anc 4 as ¢

S = Or (St & (t e was)) , (24}
( over all
tin R )

which under the usual truth functionality assumptions
yields

st = ¢ (ogleplystdoe, (t))). (25)
(over all
tin R )

Note also,that in practise, R~ will be replaced by a
suitable discretization, unless 00=max is chosen. (The

problem of extending t-norms and t-conorms to a contfn-
uum of arguments is discussed in [16]. A related result
may also be found in [12], section 5.) Similar analysis
can be carried out for remote past, future, future an-
terior, and many other temporal relations.

(e) onditioning and quantification.

Zadeh's contibutions to this area have already been
mentioned [5]. See also the discussion of other ap-
proaches in [6], pp.138-140. The approach presented
here is quite general and reduces to Zadeh's and others
for particular evaluations. let A be a generalized
subset of base space X and B a generalized subset
of Y. let quant stand for any quantification fnvolving
percentages such as "some","all”,"few","many","some-
times","often”,"most" ,"about 3/4" "0.456", etc. Llet
pot be a fixed population of individuals (an ordinary
finite set) and suppose that measurement functions
f:pop -~ X and g:pop = Y are given so that for any z in

pop,
and gzs A;='z has attribute A* = *f(z) has attributeA"
ze B)="z has attribute B" = "g(z) has attribute B".

Furthermore, pop can be considered to be an e1ement-4ﬁ6)
the ordinary sense- of a superuniversal set Pop , the
collection of all populations of possible interest. In
turn, A and B may also be considered generalized subsets
of Pop , so that for any member of Pop, such as pop,

one can define in a reasonable way membership of pop

in A and in B as

{(pop € A) = Or ( (z e A) & ( ze wt))
(rver all
and Z ¢ pop)
(pop € B) = Or ( {(ze8B) & (zewt)), (27}
(over all
z ¢ pop)

where wt is some generalfzed subset of pop, representing
weighting of importance of each indivicial for either
attribute A or B ( assuming here for simplicity that wt
is the same for both attributes). If equally likely
welghting s desired, & = 1/cand(pop).Thus, under the usual
truth functionality assumptions, it follows that

o (pop)=llpop ¢ A= oy (ogle,((2)),e,,(2)))
(over all (28)
z ¢ _pop)

with a similar expression holding for ¢,(pop), where f
is replaced by q. Similarly, the evalualion of @Anp(pop)

¥s given, 1f no “Interaction s assumed between A and €
(see [6] for further details) as:

176

°’Ane(p°p)=| {(pop ¢ ANB) ||

o (egleg(Flz))eplala)) e (2))) . (29)
{over all
z ¢ pop)

The sentences

S] = "individuals have A gfven individuals have B"
= (pop ¢ A | pop ¢ B) - (20)
and
S? = "1f individuals have B they also have A"
= "If {pop ¢ B) then (pop ¢ A)"
= ((pop,pop) < BPY-=((pop ¢ B) D (pope A))  (31)

are slight variations of eacn other. The first is an
example of conditioning, where here conditioning is de-
fined as in [1? Theorem 4. Thue, the semantic e-
valuation 1.51 satfsfies the relatfon

¢ang(pop) = |1S; & (pop ¢ B) !
= ¢, {115y 11,eg(pop)). (32)

The second is evaluated,as before,as
LiS,11 = ee(eg(pop) . e, (pop)) (33)

under the usnal assumptions.

Then, a sentence such as "Most sh1ps that have long
hulls also have maneuvering problems" may be expressed
in the general form

54 = quant(S1) or S, = quant(SZ). (24)

leading directly to the evaluations (under truth func-
tionality assumptions}

ERIEURMGED
!
1S4 = 6quant(115511) (35)
where
Squant = |lauant]1:10.17 < [0,1] (36)

is obtaired beforehand. For example, ¢ s convenient-

1y modeled as a unimodal normalized funlt1on about 3/4,
while °Q i{s a nondecreasing function, being zero over
2

[0,1/2] and then becoming monotone increasing over
[1/72,1], where Q = "about 3/4" and Q2 = "most".

Zadeh's fuzzy cardinality approach to quantification fis
obtained by choosing og prod, ¢  (z)=1/card(pop),

= bndsum (Y.e.,

wt(
for all z in pop, and by choosing )

for any LARERAR in (0,17, bndsum(v,...vn) = min(},
VY.
Vit ):
[|S3|| = quant( I (oA f(z))- ‘B glz )»/(ig?e g(z)) l
z 1n pop) z in pop)

(37}

Finally, it should be noted that ambiquity arises in
the modeling of exac* quantifiers. For example,

"al” can be approached as above through the function
¢ns (Xronecker delta function for 1) or it can

SOf°

“all z's have A"

de1ed by the hedge corresponding to the operatiton
for any sentence S , where here j& card{pop),i.e.,

}4 (o, (F(2})) 39
A

(over a1l

z in pop)
If "softening" is really intended as {n"about 5/7" for
5/7" ,"almost all” for "all”, "a few" far "there §¢"
etc., then the approach giver in *“hric< sybhsection is
most appropriate. Conversely, if an exact carcinality
is specified as in "at least 2" and is meant Titerally,

I3




" -

then combinatoric consfderations have to be made :

"At least two z's in the population which have B ,
have also A"

= Or ({z'eh) 8 (2"eh)|(2'cB) & (2"¢B)).(39)
(over all z',z2"'
in pop, z'# 2")

(f) Verb and predicative relations.
Three different aoproaches to the modeling of such
relations are gresented here.

(1) The relations may be defined operationally-i.e.,
only directly through a membership function. For example
the binary relation "runs to" as in "John runs to the
store" can be deiined over the domain X=YxZ, where Y is
some relevant hunan population and 7 is a collection of
possible objects of the verb "run to".

(1) The relations may be defined indirectly through
the use of measurement functions, as ntroduced earlier.
Thus "gross”,"fat","small”, depending of course gn the
context, can be directly defined on the domain R'x
after 1ntroduc1ng the natura1 measurement functions
i:pop ~ R, g:pop -~ RY , representing hefght in inches
and weight in pounds, respectively.

(111) The relations may be analyzed further, analog-
ous to a dictionary definition of a relatively compounc
concept in terms of more primative ones. In turn, these
relations could be used to form constraints between the
components, which would be thea modeled. The usefulness
of this approach remafns to be established.

EYAMPLES ILLUSTRATING SOME OF THE PRIN IPLES

The above stated principles serve as guidelines in the
modeling of natural language information. In practice,
much fngenuity must be €xercised (in a sense, this is
an art, based upon intuftion) ¥n properly capturing
the essence of the meaning of a given sentence. Such
will continue to be the case until a unfversal parsing
procedure 1s discovered (see the comments earlier in
the previous subsections)!

Example 1.
Consider the

Let: pop,
pop,

compoundsentence ¢ 1in the Introduction:

set of all days of interest , {40)

= set of all ocean regions of interest
= (VM. )} , (a1)

set of all subtmarines of interest , (42)

P°P3
X=(range of
* lrange of
x (range of
= {range of
x (range of

S RxR*x[0,1]xR*xR* ,representing weather measurements,

tossiblc terperatures in degrees)

rossible wind velocities in m.p.h.)

%'s possible representing cloudiness,etc.)
possible no. representing precip. inten.)
average maximal visibility in miles)

range of wave-chep heights)x(range of max, water &235
CR*xR , representing sea state conditions , (44)

with also domafns v,w,..sf(m latitude and longitude).
Also define (errorless) measurement functions

wem:pop1xpop2 + X , weather measurement funct.
function

-

ssm: DOD1'DODZ - Y , sea state meas. ,
(47

Yoc: popg - VWY geolocatfon meas. function
pop; , j=1.2,

= ("6“1(11‘22)‘ wemS(z],zz)) R [ap)
visibility during

In particular, for any zJ(

wan(ZY.zz)
sotMtwmsh]JQ

in reqion z, (z

) is the av. max.
,=V or W).
Next, detine generalized set C by, ror ai! zj € pop,,

=2,

day 2,

(2152500, (0 (wem(zy,2,))0, q (ssm(zy,2,))) (49)

turd
r must be modeled and

(x)) , a1l x¢f0,1]

poor

noting that ¢ 00

*rel h.(xg : ¢hedqel("normal . (50)
turb
for some properly chosen hedge,,etc.

Define generlized set D, where for any z, in pop,
00(22)%0
(over all
z4 in pop3)

Hz, was ir 2,1 {51)

where

Hzy was 10 z,1]= o4 (o, (e, (ggc 23),t) .6
(all t in R‘

Define generalized set £, for any z;

aE(Z§.z3)=¢

Ju).
(52)

,13 £ popy »

wtd dist(]oc(zi).loc(za"))), (53)

q9e0
match-
arises from

atcé\a

of equality of means from qgaussian data, and {s thus
exponential in form (see [16], Chapter 9 for further
details re]at1ng statistical procedures with this mo-
deling). (A?c(z ).t), typica!?y may be obtained as

where ¢ ,typlcally, hypotheses testing

the probab111ty function evaluation corresponding to
the output of a Kalman filter ,for sensor system A.
Next, define generalized set F, where for all z,e¢ oop; ,
z, € pop,, zé,zg € popy, € € [0,1) -representin&

:[0,13+[0,1

possible correlation levels; and for all ¢y
for j=1,2,3 , J

0p(20.25,25,25,8,8, 20y 20y ) =
AR R ARE A M R L
oplog(ec(2y.2,) 0, (o,

(8, (o (ox, (oplza)) oty (op(23.250)) oo (ocm(:»g

4
Then define generalfzed set G, by for all z',z3"c pob.,
with 12=V. and for all L2 ,§=1,2,3,and al
J

(Wms(z] |z2))))

6.(25,25,6,¢, 48, o6, )
613773700k, %k, %,

¢

L (e p(2yV023,25.0,0, 20y "x 1) . (55)
(all 2z 1 2

in po; )

Define genera11zed set H by the conditioning procedure
where for all 23.23, "oy ,J=1,2,3, witn 22=N

¢ ( vz 28,4 '$ »® pop, € F( lZ .Z »0,¢ ))
HIZ30E300 00k 20y o0k, “*nos £POP1 22320 »bgeb)
0 eg (ogleg (z].H.13.15.6.¢K1.oK2.¢K3).owt(z1)))}
(a1l z 56
in poL ) (56)
Finally, def1ne generalized set L,corraspording to in-
ference rule S*(e]z3,z3) , indicating the functional

25 ¢ popy, 8¢ [0,1],

dependencies, as, for a11 13 3
1ow ) zhigh *$1gen’
ffec ffec

¢L(e z?.z3) =

|

[1s*(e]z5,25) 1= o&($ (23,250

(252509, é ol ) 1gh .¢N))
rov (effec ffec

with the required models assumed obtafnable for the
hedges "improve" ,"low effect","high effect" etc.
Example 2.
Consider the compound sentence S** in the Introduction:
let all notation be as in Example 1, where required:

“*mos

(57)




Without loss of generality, fix time interval [a,b] com-
patible with a fixed single day zl' ¢ popy. let
pop,= set of all surface ships of interest.
Assume that za‘ fs our own ship and z, is the tarqet
one with z,, z,* ¢ pop,. Fix also regign T = region
around the Strﬁights 09 Skagerrak, and let T
Suppose also that
Z=(range of possible hull lengths)x- -
x(range of possible side-insignia colors)x--
x(range of possible descriptions-locations of promin-
ent objects on ship surface)x---
CR¥x--x{..,red,purple,. . }x--x{. . ,(sq.box,front), .
{ovel-dome,rear),. . dx--- , (58
and (errorless)measurement function is given

€ pop,.

des:pop4 ~ 7 , a description function, (59’

where , for any 14 in POPy »
= y (60
des(zA) (des](z4),..,desj(za),...des]7(zd)....“ )

let "foggy" be a generalized subset of the range of the
average maximal visibility in miles, for simplicity.

Dgfine generalized set A, where for any times t',t" t",
and 24 )
z

¢, (t",t0t%, 2)=¢ P Zg)s e (-t ) e (2 e,
ldg contac
\over [t' t"]

{Joc(z,*),t™ o (t',t" t"O) (61)
ster- ' Vwas v '
? or geo !Wems 2,™) € f°99y)
and in turn, define generalized set B, where for all 255
0g(Z4) = ¢4 Co (0t 2.0 ), (g2)
(over all t',t",t"™  with
agt'<t"<t™ <b )

Next, define the gcneralized set C , where for all 2

¢C( 24)=°&S°€osterior(de
e

4 sterior
escrip17
- . -
Oful Leuiidi
Get of ship ‘

ames

5

s,(z,)) ,
scrip (weas{gl’,T')efoggy)&
@naybe(observ(desB(zd))=purp1e
(des]7(24)) 5

@ems(z]',T‘)c foggy)&

maybe(observ(des17(24D%ova1-dome.rea
( desz(z‘z\) S {6?)
des3(za) . d@s]7(z4))

where des, 15 the naming description such as "Jones",
"S.S. Jacason', etc, and where all conditional or
conditional posterior generalized sets as above must be
approgpriately modeled Then, finally,define the general
ized set M, corresponding to information =*(z,), for
all z, in Popy , as 4
ou(zg) = [ (zg) 1] = oyleglz) e (24)). (64)
Modeling of inference rules such as given in Example 1
and error distribution information as given in Example
2 can be used to extend the usefulness of the PACT or
more generally any related combination of evidence
procedure which fs essentfally the semantic evaluation
of the disjunction over all nuisance parameter values
of the conjunction of all relevant fnformation- in the
PACT case, being the conjunction of all relevant infer-
ence rules cornecting matching levels for attributes
with correlation Tevels and error tables in the form
of possibility or membership functions for the attri-
butes fn posterfor forms, given observed data [1].

SUMMARY AND CONC LUSIONS

An outline has been presented for the modeling ang se-
mantfc evaluation of linguistic Information. The imple-
mentation of this depends heavily upon the aprrarsis+e
mode.fng of the relevant component membership functions
of the generalized sets involved. (See (6], pp. 255-264
for approaches to the latter problem.) Much work re-
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mains to be done in the general area.
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